Thyroid hormone controls the onset of androgen sensitivity in the developing larynx of Xenopus laevis.
نویسندگان
چکیده
Gonadal differentiation, the onset of androgen-stimulated laryngeal growth and the genesis of a sex difference in laryngeal innervation, all temporally coincide with thyroid hormone (TH)-induced metamorphosis in Xenopus laevis. To explore the role TH plays in the ontogeny of the Xenopus androgen-sensitive vocal neuromuscular system, we examined gonadal and laryngeal development in tadpoles in which metamorphosis had been blocked by treatment with the thyroxine synthesis inhibitor propylthiouracil (PTU). PTU treatment did not arrest gonadal differentiation. Testes from PTU-treated male tadpoles had seminiferous tubules and advanced stage male germ cells, while in females stage 1 oocytes were present. In contrast to the gonads, PTU did block morphological development of the larynx. Tadpoles treated with PTU for 50 or 100 days had larynges which structurally resembled those of stage 54 control tadpoles. PTU-treated animals did not exhibit the extensive development of the laryngeal cartilage seen in untreated animals. Laryngeal cartilages of hypothyroid tadpoles exhibited low density and minimal patterning of chondrocytes; the complex lumen and marked expansion of the dilator muscles characteristic of 50- and 100-day untreated animals were absent. Laryngeal growth evoked by exposure to exogenous androgen (dihydrotestosterone) was entirely prevented by PTU treatment. Hypothyroid tadpoles did not exhibit the decline in laryngeal nerve axon number characteristic of age-matched controls, nor were laryngeal nerve axon numbers sexually dimorphic. PTU treatment also interfered with the myelination of laryngeal axons. We conclude that while gonadal differentiation is independent of TH, androgen sensitive laryngeal development and sexually dimorphic laryngeal innervation require exposure to secreted TH.
منابع مشابه
Androgen-induced proliferation in the developing larynx of Xenopus laevis is regulated by thyroid hormone.
Exposure to exogenous androgen regulates cell number in the developing larynx of Xenopus laevis and hormone-regulated laryngeal development requires secretion of thyroid hormone (TH). We sought to determine whether exposure to TH is both sufficient and necessary for androgen-evoked cell proliferation (androgen competency) in developing larynx. Androgen competency was not observed in the premeta...
متن کاملVocal pathway degradation in gonadectomized Xenopus laevis adults.
Reproductive behaviors of many vertebrate species are activated in adult males by elevated androgen levels and abolished by castration. Neural and muscular components controlling these behaviors contain numerous hormone-sensitive sites including motor initiation centers (such as the basal ganglia), central pattern generators (CPGs), and muscles; therefore it is difficult to confirm the role of ...
متن کاملExpression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملControlling transgene expression to study Xenopus laevis metamorphosis.
Sperm-mediated transgenesis of Xenopus laevis is the first application of genetic methodology to an amphibian. However, some transgenes are lethal when they are expressed constitutively. To study the influence of these genes on amphibian metamorphosis and to generate F1 progeny from mature transgenic adults, these transgenes must be placed under the control of an inducible system so that they c...
متن کامل1 2 3 Vocal pathway degradation in gonadectomized Xenopus laevis adults 4 5
46 47 Reproductive behaviors of many vertebrate species are activated in adult males by 48 elevated androgen levels and abolished by castration. Neural and muscular components 49 controlling these behaviors contain numerous hormone-sensitive sites including motor 50 initiation centers (such as the basal ganglia), central pattern generators (CPGs) and 51 muscles; therefore, it is difficult to co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 176 1 شماره
صفحات -
تاریخ انتشار 1996